Unpredictability and the Foundations of Economic Forecasting

نویسنده

  • David F. Hendry
چکیده

We revisit the concept of unpredictability to explore its implications for forecasting strategies in a non-stationary world subject to structural breaks, where model and mechanism differ. Six aspects of the role of unpredictability are distinguished, compounding the four additional mistakes most likely in estimated forecasting models. Structural breaks, rather than limited information, are the key problem, exacerbated by conflicting requirements on ‘forecast-error corrections’. We consider model transformations and corrections to reduce forecast-error biases, as usual at some cost in increased forecast-error variances. The analysis is illustrated by an empirical application to M1 in the UK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Economic Foundations and Risk Analysis in Investment Management

The risk management systems now used in investment analysis are based on Markowitz meanvariance optimization. Successful application depends on the accuracy with which market returns, risk, and correlation are predicted. Forecasting methods now commonly employed for this purpose rely on time-series approaches that generally ignore economic content. This article suggests that explicitly incorpor...

متن کامل

Predicting Iran's economic growth rate using meta-analysis method

One of the most important issues for governments to maintain and improve their position in the regional and global economy is the state of economic growth; one of the important issues in this situation is to predict the rate of economic growth. Proper forecasting of economic growth has very important effects on government policy and economic planning, and can help policymakers decide on future ...

متن کامل

Forecasting GDP Growth Using ANN Model with Genetic Algorithm

Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...

متن کامل

Forecasting Stock Trend by Data Mining Algorithm

Stock trend forecasting is a one of the main factors in choosing the best investment, hence prediction and comparison of different firms’ stock trend is one method for improving investment process. Stockholders need information for forecasting firm’s stock trend in order to make decision about firms’ stock trading. In this study stock trend, forecasting performs by data mining algorithm. It sho...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002